Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 415, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580843

RESUMO

The ten-eleven-translocation family of proteins (TET1/2/3) are epigenetic regulators of gene expression. They regulate genes by promoting DNA demethylation (i.e., catalytic activity) and by partnering with regulatory proteins (i.e., non-catalytic functions). Unlike Tet1 and Tet2, Tet3 is not expressed in mouse embryonic stem cells (ESCs) but is induced upon ESC differentiation. However, the significance of its dual roles in lineage specification is less defined. By generating TET3 catalytic-mutant (Tet3m/m) and knockout (Tet3-/-) mouse ESCs and differentiating them to neuroectoderm (NE), we identify distinct catalytic-dependent and independent roles of TET3 in NE specification. We find that the catalytic activity of TET3 is important for activation of neural genes while its non-catalytic functions are involved in suppressing mesodermal programs. Interestingly, the vast majority of differentially methylated regions (DMRs) in Tet3m/m and Tet3-/- NE cells are hypomethylated. The hypo-DMRs are associated to aberrantly upregulated genes while the hyper-DMRs are linked to downregulated neural genes. We find the maintenance methyltransferase Dnmt1 as a direct target of TET3, which is downregulated in TET3-deficient NE cells and may contribute to the increased DNA hypomethylation. Our findings establish that the catalytic-dependent and -independent roles of TET3 have distinct contributions to NE specification with potential implications in development.


Assuntos
Dioxigenases , Animais , Camundongos , Diferenciação Celular/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Placa Neural/metabolismo
2.
Glia ; 71(3): 775-794, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36433736

RESUMO

Colony stimulating factor (CSF) receptor-1 (CSF-1R)-related leukoencephalopathy (CRL) is an adult-onset, demyelinating and neurodegenerative disease caused by autosomal dominant mutations in CSF1R, modeled by the Csf1r+/- mouse. The expression of Csf2, encoding granulocyte-macrophage CSF (GM-CSF) and of Csf3, encoding granulocyte CSF (G-CSF), are elevated in both mouse and human CRL brains. While monoallelic targeting of Csf2 has been shown to attenuate many behavioral and histological deficits of Csf1r+/- mice, including cognitive dysfunction and demyelination, the contribution of Csf3 has not been explored. In the present study, we investigate the behavioral, electrophysiological and histopathological phenotypes of Csf1r+/- mice following monoallelic targeting of Csf3. We show that Csf3 heterozygosity normalized the Csf3 levels in Csf1r+/- mouse brains and ameliorated anxiety-like behavior, motor coordination and social interaction deficits, but not the cognitive impairment of Csf1r+/- mice. Csf3 heterozygosity failed to prevent callosal demyelination. However, consistent with its effects on behavior, Csf3 heterozygosity normalized microglial morphology in the cerebellum and in the ventral, but not in the dorsal hippocampus. Csf1r+/- mice exhibited altered firing activity in the deep cerebellar nuclei (DCN) associated with increased engulfment of glutamatergic synapses by DCN microglia and increased deposition of the complement factor C1q on glutamatergic synapses. These phenotypes were significantly ameliorated by monoallelic deletion of Csf3. Our current and earlier findings indicate that G-CSF and GM-CSF play largely non-overlapping roles in CRL-like disease development in Csf1r+/- mice.


Assuntos
Doenças Desmielinizantes , Doenças Neurodegenerativas , Humanos , Adulto , Camundongos , Animais , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ansiedade/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Cerebelo/metabolismo
3.
Glia ; 69(3): 779-791, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33079443

RESUMO

Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a dementia resulting from dominantly inherited CSF1R inactivating mutations. The Csf1r+/- mouse mimics ALSP symptoms and pathology. Csf1r is mainly expressed in microglia, but also in cortical layer V neurons that are gradually lost in Csf1r+/- mice with age. We therefore examined whether microglial or neuronal Csf1r loss caused neurodegeneration in Csf1r+/- mice. The behavioral deficits, pathologies and elevation of Csf2 expression contributing to disease, previously described in the Csf1r+/- ALSP mouse, were reproduced by microglial deletion (MCsf1rhet mice), but not by neural deletion. Furthermore, increased Csf2 expression by callosal astrocytes, oligodendrocytes, and microglia was observed in Csf1r+/- mice and, in MCsf1rhet mice, the densities of these three cell types were increased in supraventricular patches displaying activated microglia, an early site of disease pathology. These data confirm that ALSP is a primary microgliopathy and inform future therapeutic and experimental approaches.


Assuntos
Doenças Desmielinizantes , Leucoencefalopatias , Doenças Neurodegenerativas , Animais , Leucoencefalopatias/genética , Camundongos , Microglia , Neuroglia , Receptores Proteína Tirosina Quinases , Receptores de Fator Estimulador de Colônias , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética
4.
Cell Rep ; 30(9): 3004-3019.e5, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130903

RESUMO

CSF-1R haploinsufficiency causes adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). Previous studies in the Csf1r+/- mouse model of ALSP hypothesized a central role of elevated cerebral Csf2 expression. Here, we show that monoallelic deletion of Csf2 rescues most behavioral deficits and histopathological changes in Csf1r+/- mice by preventing microgliosis and eliminating most microglial transcriptomic alterations, including those indicative of oxidative stress and demyelination. We also show elevation of Csf2 transcripts and of several CSF-2 downstream targets in the brains of ALSP patients, demonstrating that the mechanisms identified in the mouse model are functional in humans. Our data provide insights into the mechanisms underlying ALSP. Because increased CSF2 levels and decreased microglial Csf1r expression have also been reported in Alzheimer's disease and multiple sclerosis, we suggest that the unbalanced CSF-1R/CSF-2 signaling we describe in the present study may contribute to the pathogenesis of other neurodegenerative conditions.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Microglia/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Alelos , Animais , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Atrofia , Depressão/prevenção & controle , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Gliose/patologia , Heterozigoto , Homeostase , Humanos , Leucócitos/patologia , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Camundongos Endogâmicos C57BL , Microglia/patologia , Atividade Motora , Bainha de Mielina/patologia , Bulbo Olfatório/patologia , Bulbo Olfatório/fisiopatologia , Estresse Oxidativo , Fenótipo , Receptor de Fator Estimulador de Colônias de Macrófagos/deficiência , Memória Espacial , Transcriptoma/genética , Substância Branca/patologia , Substância Branca/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...